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Abstract: Farmers that intend to access Common Agricultural Policy (CAP) contributions must
submit an application to the territorially competent Paying Agencies (PA). Agencies are called to
verify consistency of CAP contributions requirements through ground campaigns. Recently, EU
regulation (N. 746/2018) proposed an alternative methodology to control CAP applications based
on Earth Observation data. Accordingly, this work was aimed at designing and implementing a
prototype of service based on Copernicus Sentinel-2 (S2) data for the classification of soybean, corn,
wheat, rice, and meadow crops. The approach relies on the classification of S2 NDVI time-series (TS)
by “user-friendly” supervised classification algorithms: Minimum Distance (MD) and Random Forest
(RF). The study area was located in the Vercelli province (NW Italy), which represents a strategic
agricultural area in the Piemonte region. Crop classes separability proved to be a key factor during
the classification process. Confusion matrices were generated with respect to ground checks (GCs);
they showed a high Overall Accuracy (>80%) for both MD and RF approaches. With respect to MD
and RF, a new raster layer was generated (hereinafter called Controls Map layer), mapping four levels
of classification occurrences, useful for administrative procedures required by PA. The Control Map
layer highlighted that only the eight percent of CAP 2019 applications appeared to be critical in terms
of consistency between farmers’ declarations and classification results. Only for these ones, a GC was
warmly suggested, while the 12% must be desirable and the 80% was not required. This information
alone suggested that the proposed methodology is able to optimize GCs, making possible to focus
ground checks on a limited number of fields, thus determining an economic saving for PA and/or a
more effective strategy of controls.

Keywords: common agricultural policy; service prototype development; crop monitoring; crop
detection; random forest classification; minimum distance classification

1. Introduction
1.1. CAP and Contributions to Agriculture in the EU

The Common Agricultural Policy (CAP) represents the set of rules issued by the
European Union (EU) for the regulation of the agricultural sector, with the aim of pursuing
its harmonized development within all the Member States. CAP, as set out in Art. 39 of the
Treaty on the Functioning of the European Union (TFEU), aims at increasing agricultural
productivity [1], ensuring standards of living for the agricultural community, stabilizing
markets and guaranteeing the availability of supplies, without neglecting environmental
sustainability, food safety, and animal welfare [2,3].

CAP is founded by EAGF (European Agricultural Guarantee Fund) and EAFRD
(European Agricultural Fund for Rural Development), which finance the first and second
pillar, respectively, within a general strategy that supports the main actions in agriculture.
Additionally, other national and regional investments are possible from each Member
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Country, aimed at supporting peculiar and local interventions [4–6]. More specifically,
CAP’s first pillar, supported by the EAGF fund, concerns the Common Organization of
Markets (CMO) supporting farmers with direct payments, that rewards actions favoring
markets stabilization, increasing of agricultural production, environmental sustainability,
and providing fair support to the life standard of farmers. EU delegates to Member States
the following mandatory actions: (a) definition and application of the basic payment
scheme; (b) definition and application of young farmers payment scheme (<40 years old
that have been working as farmers for less than five years); (c) greening interventions,
that guarantee additional payments per area for those farmers implementing practices
that generate environmental benefits (e.g., crop diversification, maintenance of existing
permanent grasslands, and ecological focus areas). Additionally, other direct payments can
be activated voluntarily by the Member States: (a) contributions for areas showing natural
constraints/less favored areas; (b) small farmers; (c) coupled payments; (d) redistributive
payments for first hectares.

CAP second pillar, supported by EAFRD and regional/national funds, promotes
sustainable rural development. In particular the objectives are: fostering agricultural
competitiveness, ensuring sustainable management of natural resources, climate action,
and development of rural economies and communities [7]. Member States (or their re-
gions) define multi-annual rural development programs, personalized and divided into
different measures, which must respond to EU rural development policy. Table 1 shows
the prospectus of CAP funds addressed to Italy in the 2014–2020 period [8].

Table 1. Common Agricultural Policy (CAP) funding to Italy from 2014 to 2020 (billion euros) (Source: Ministry of
Agricultural, Food and Forestry Policies).

Fund European Union Funds National Funds Total Annual Average

Direct Payments 27 0 27 3.8
Common Organization of Markets (CMO)

wine, fruit, and vegetables 4 0 4 0.6

Rural development 10.5 10.5 21 3
Total 41.5 10.5 52 7.4

1.2. Types of CAP Controls

Farmers that intend to access CAP contributions must apply to the territorially com-
petent Paying Agency. Payment claims must provide precise and updated information
regarding areal consistency and structural features of farm. As required by Art. 17 of Reg.
(EU) n. 809/2014 [9], applications must be based on geospatial data. GSAA (Geo Spatial
Aid Application) describe farm parcels information through a GIS-based (geographic infor-
mation system) approach and can be managed by paying agencies through the Integrated
Management and Control System (IACS). IACS, additionally, allows unambiguous identifi-
cation of agricultural parcels, connection to digital databases and execution of systematic
checks [10]. GSAA contains information about land use and size of parcels and location of
the (eventual) ecological focus areas. IACS is used by Paying Agencies in order to verify
applications compliance with requirements and it relies on administrative (AC) and spot
checks (SC). AC is performed on 100% of applications and aims to automatically detect for-
mal faults through informatics tools. In particular, AC are called to verify compliance with
eligibility criteria and maintenance of long-term commitments; compliance with deadlines
for submitting payment claims; completeness of supplied documentation; absence of other
financing quotes through other EU schemes. SC are generally performed with reference
to five percent of applications with the aim of checking truthfulness of declared area size,
verifying eligibility criteria, and testing compliance with envisaged commitments and
obligations. SC are generally operated by photo-interpretation of high resolution satellite
images and/or, in specific and rare cases, by direct ground checks (GCs).
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1.3. Remote Sensing and CAP Controls

Crop monitoring by Earth Observation (EO) satellites is a possible alternative method-
ology to SC and it was recently proposed by EU Reg. No. 809/2014 Art. 40 bis amended
by EU Reg. No. 746/2018. The Italian Agency for Payments in Agriculture (AGEA), that
represents the national agency for CAP application in Italy, was the first one (2018) to test a
satellite-based monitoring system during a pilot project involving the Province of Foggia
(SE-Italy). It was aimed at checking applications related to the Basic Payment and Small
Farmers scheme (Title III and V, respectively, of EU Regulation no. 1307/2013).

1.4. Study Goals

Within this context, in 2019, the Piemonte Agency for Payments in Agriculture
(ARPEA), in collaboration with the Department of Agricultural, Forest and Food Sciences
(DISAFA) of the University of Turin and the Aerospace Logistics Technology Engineering
Company (ALTEC), activated its own experimental phase. The project was addressed
to calibrate deductions from remote sensing to fit the specific local agricultural context,
that appeared to be significantly different from the one where the previously mentioned
national experience was run. The aim of this work was to design and develop a proto-
type service for crop classification based on multitemporal Copernicus Sentinel data. In
particular, research outcomes were: (a) reduction of the overall costs for controls related
to GCs and related administrative procedures; (b) minimization of subjectivity affecting
the photo-interpretation process; (c) a timely update of irregular GSAA by farmers in
consequence of warning coming from the system. Definitely, the project was intended to
replace and/or integrate SC as required by EU regulations. Nevertheless, the possibility
of classifying main crops over the whole regional territory can also be useful to resolve
contradictions between public administration and farmers that arise in various stages of
the administrative procedure. With these premises, a pilot area was selected within the
Province of Vercelli.

2. Materials and Methods
2.1. Study Area

Piemonte Region (NW–Italy) consists of 8 Provinces, each of them with peculiar
geomorphological and climatic characteristics, which determine different agricultural
landscapes with different crop vocation. The study area (AOI) corresponds to the flat
part of the Vercelli province (Figure 1). It is about 2081 km2 and is entirely contained in a
single Sentinel-2 (S2) tile. It is highly devoted to extensive agriculture with a prevalence of
submerged crops (rice).
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2.2. Monitored Crops and Related Agronomic Calendar

Currently, crop detection for AC is performed by photo-interpretation of aerial or-
thoimages with a time frequency of 3 years. Conversely, three VNIR (visible-NIR) high-
resolution satellite image are photo-interpreted to support SC every year; in case of doubts,
GCs are performed. Detection by satellite data is the expected (at least partially) alternative
to this process. In this work, attention was paid to recognition of five crops: soybean,
corn, wheat, rice, and meadow. The choice relies on requirements from the basic payment
scheme (Title III of Reg. (EU) 1307/2013), from the optional coupled support, and from the
payment for agricultural practices beneficial for climate and environment (Title IV).

In particular, soybeans and rice are eligible for receiving additional payments provided
by the coupled support. For selected crops, correspondent agronomic calendars were
available (Figure 2) and were used to support improve phenological interpretations.
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Figure 2. Example of the cultivation phases for the analyzed crops in the province of Vercelli.

2.3. Available Data

The following data were used for this study: (a) Copernicus Sentinel 2 data; (b) GSAA
database for EU incentives under CAP 2019; (c) data from ground surveys carried out by
ARPEA Piemonte technicians in the 2019 growing season.

2.3.1. Satellite Data

Availability of EO satellite images is currently large [11,12]. Nevertheless, not all data
are suitable for agronomic applications. In particular, to detect and monitor crops, basic
operational requirements are: (a) an adequate geometric resolution with respect to fields
size; (b) high temporal resolution for phenological phases detection; (c) spectral bands
sensitive to crop parameters (biomass, photosynthetic activity); (d) costs compatible with
agronomic sector (possibly free of charge). The Sentinel 2 mission presents a nominal
time resolution of 5 days (cloud cover dependent); images are supplied for free already
calibrated in at-the-ground reflectance with a maximum geometric resolution of 10 m.
These features make them certainly compatible with the purpose of this work. EU mission
S2 is equipped with multispectral optical sensors capable of acquiring spectral bands in
the range 400–2500 nm (from visible to medium infrared). S2 data are made available
by the European Space Agency (ESA) through different web portals. The official one is
the Sentinel Scientific Open Data Hub (ESA, https://scihub.copernicus.eu/). For this
work, 53 S2 Level-2A images (tile 32TMR) were obtained covering AOI along the 2019
growing season. The single tile covers an area of 100 × 100 km2, is orthoprojected in the
WGS84 UTM reference system. Level 2A products are supplied in at-the-ground reflectance
(Bottom of the Atmosphere, BOA) and, consequently, they can be immediately used for
terrestrial applications [13]. Technical characteristics of S2 Multi Spectral Instrument (MSI)
sensor are shown in Table 2.

https://scihub.copernicus.eu/
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Table 2. Sentinel-2 Multi Spectral Instrument Technical characteristics.

Bands (nm) Geometric Resolution (m)

B1: 433–453 60
B2: 458–523 10
B3: 543–578 10
B4: 650–680 10
B5: 698–713 20
B6: 733–748 20
B7: 773–793 20
B8: 785–900 10

B8a: 855–875 20
B9: 935–955 60

B10: 1360–1390 60
B11: 1565–1655 20
B12: 2100–2280 20

Radiometric resolution: 12 bit
Temporal resolution: 5 (10) days

S2 data are supplied equipped of some auxiliary information. The most interesting
one for this work was the SCL layer defining pixel quality according to a numerical coding
as reported in Table 3.

Table 3. Coding of pixel assignment classes adopted in the “scene_classification” layer provided
with Level 2A products.

Code Description

0 No data
1 Saturated or Defective
2 Dark area pixels
3 Cloud shadows
4 Vegetation
5 Not vegetated
6 Water
7 Unclassified
8 Cloud Medium Probability
9 Cloud High Probability

10 Thin Cirrus
11 Snow

2.3.2. Farmers’ Geospatial Data Applications

GSAA dataset is currently not accessible to all users. For this work, it was provided by
ARPEA in vector format for the 2019 season. GSAA contains basic information about crops
and in particular the declared crop type (Table 4). About 210,000 GSAA were collected
within AOI.

Table 4. Example data contained in Geo Spatial Aid Application (GSAA).

ID GSAA Municipality Field Area (ha) Declared Cultivation Products ID of Farm Company

10115784 Vercelli 0.5 Rice Beans, seeds, grains 1467
13248425 Vercelli 0.72 Meadow Forage 1462
27757591 Vercelli 2.49 Rice Beans, seeds, grains 1191
25860265 Vercelli 1.39 Corn Beans, seeds, grains 1712
24675625 Vercelli 0.18 Soybean Beans, seeds, grains 1560
22426581 Vercelli 4.43 Barley Beans, seeds, grains 763
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2.3.3. Ground Surveys

A ground campaign was performed by ARPEA according to GCs’ standard in sum-
mer 2019 in order to validate remotely sensed deductions. GCs information were then
georeferenced by Topcon GRS-1 (Topcon Positioning Italy Srl, Ancona, Italy) GNSS (Global
Navigation Satellite System) receiver coupled with Mercury© (Mercury Systems, Inc., An-
dover, MN, USA) post-processing software [14]. During GCs, information about actual crop
type was recorded. Moreover, some interviews were done to farmers to collect information
about main agronomics operations (plowing, sowing, harvesting, mowing, flooding, and
dry) they adopted. A total of 641 fields, covering about 1410 ha, were surveyed. Table 5
shows number and size of fields surveyed for each crop type.

Table 5. Size and number of surveyed plots per crop type.

Crops Number of Fields Surveyed Total Area of Fields Surveyed (ha)

Soy 89 120.74
Corn 187 77.11

Wheat 105 847.78
Rice 159 108.25

Meadows 101 257.32

2.4. Data Processing

The main conceptual steps of the proposed methodology are reported in Figure 3.
Involved steps are deeply explained in the following sections.
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2.4.1. NDVI and Multi-Temporal Stack Generation

The Normalized Difference Vegetation Index (NDVI) is widely known in literature
to be a spectral index able to retrieve information about vegetation [15–19], with special
concern about phenology [20–22], ecosystems characterization [23], crop yield predic-
tion [24,25], urban green areas and heat islands monitoring [26,27], tree vigor decline
assessment [28,29], insurance strategies in agriculture [30–33]. In this work, NDVI was
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assumed as phenology predictor and computed starting from the native S2 L2A imagery to
compose a NDVI image time series covering the whole 2019 growing season. A similar
image time series was generated with respect to the SCL layer and used to mask out bad
observations during TS filtering and modelling. Filtering and modelling of NDVI temporal
profiles were achieve at pixel level using a self-developed routine implemented in IDL
v4.8 (Harris Geospatial Solutions, Inc., Broomfield, CO, USA) [34]. After bad observations
removal, a spline-base interpolation (tensor value was set = 10) was performed in the
time domain to regularize the local NDVI temporal profile. The resulting filtered and
regularized NDVI time series assumed a nominal time frequency of 5 days [35,36]. Sixty-
nine NDVI maps were finally obtained for the 2019 and stacked along a new time series
(hereinafter called TS). TS was used to describe the temporal profile of each vegetated pixel
in AOI and, consequently, its phenology (Figure 4).
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Figure 4. Examples of Normalized Difference Vegetation Index (NDVI) temporal profiles. They describe, at pixel level,
NDVI evolution over time. (a) Soybean; (b) Soybean in succession with other crops; (c) Corn; (d) Wheat; (e) Wheat in
succession with other crops; (f) Rice; (g) Meadow.

The basic assumption of this work was that NDVI temporal profile can be interpreted
to recognize crops and related occurring management practices [37], especially when
agronomic calendars are known. Several works adopted TS analysis in agriculture; for
example Schreier [38] combined Landsat, S2 and MODIS data to map crop specific phenol-
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ogy. Furthermore Gómez-Giráldez fused S2 and terrestrial photography to monitor grass
phenology and hydrological dynamics [39]. According to ordinary agronomic uses, in this
work, TS was generated with respect to the so called St. Martin’s year (agronomic year) that
starts/ends on the 11th November. This yearly time range is needed, in AOI, to correctly
describe phenology of both “winter” (as autumn-winter cereals) and “summer” crops (as
corn and rice). Such an approach was already proved to be effective in crop classification
analysis [40].

2.4.2. Selection of Controllable Fields

Depending on the size and the shape of monitored fields, deductions can greatly vary
in terms of reliability. In particular, the characterization of plot size and shape with respect
to S2 geometrical resolution is fundamental. Not reliable measures can in fact occur while
working with fields showing small size and/or a high shape anisotropy [41,42], mostly due
to the so called mixed pixels whose spectral response results from the joint contribution of
different type of covers. To take care about this issue, the Shape Index (SI, Equation (1))
and the area of GSAA polygons were computed by ordinary GIS tools available SAGA GIS
7.5 [43].

SI =
P

2
√

πA
(1)

where P and A are the polygon perimeter and area, respectively [44]. All GSAA polygons
having area less than 0.1 ha (about 3 × 3 pixels) and SI ≥ 3 (very elongated shape) were
masked out and labeled as “not controllable by satellite”.

2.5. ROI Selection and Assessment

Preventively, NDVI value of each TS layer was averaged with respect to candidate
polygons belonging to GSAA database. A supervised classification approach [45–47] based
on the assessment of field average NDVI profile was selected as the most suitable one.
With reference to focus crops, 151 regions of interest (ROI) were selected from GSAA and
verified by querying and interpreting correspondent TS profiles. ROI distribution within
AOI is shown in Figure 5.
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Table 6. Characteristics of ROI.

Crop Class ID ROI ID Crop #Plots Area (ha) Description

Soybean 100
1

16 26.57 Soya as the only crop for the entire agronomic year
101 12 6.11 Soya in succession to a second crop

Corn 200 2 32 69.09 Corn as the only crop for the entire agronomic year

Wheat
300

3
14 11.54 Wheat as the only crop for the whole agronomic year

301 21 32.22 Wheat grown on a second crop

Rice 400 4 40 289.37 Rice as the only crop for the whole agronomic year

Meadow 500 5 16 15.38 Meadow not alternated, as the only crop for the entire
agronomic year, with some mowings

Total - - 151 450.29 -

TS profile interpretation was achieved by comparing it to available agronomic cal-
endars. Wheat and soybean required to be separated in two different ROIs according to
management type related to crop rotation [48,49]. Table 6 reports ROIs features: ROI and
crop identifier (ID), sample size (n. of polygons and area), and class description. Figure 6
shows mean NDVI profiles (and standard deviation) of ROIs. To preventively explore
ROIs separability, the pairwise Jeffries-Matusita test (JM) was run [50]. JM computes a
parameter varying between 0 and 2, where 2 means complete separability of compared
classes, 0 means no separability.
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2.6. Crop Type Classification

As previously mentioned, a plot-based classification approach was adopted in this
work. Two algorithms were contemporarily used: Minimum Distance (MD) and Random
Forest (RF) [51]. This choice relied on the consideration that crop type detection was
expected to be ingested by ordinary workflows of CAP payment agencies. Consequently,
the easier the approach, the easier the technological transfer. These algorithms areas are
known to be fast and easy to be managed since they require the setting of few parameters
and results are often reliable and satisfying. Conversely, they adopt different criteria to
compare reference profiles (ROIs) with the local one. Consequently, an approach integrating
two different answers to the same question retained a good choice for making results
more robust. Many works in literature highlighted the performance and capability of
these classifiers in the agricultural context [52,53]. Classifications were run using routines
available in SAGA GIS 7.0.0.

2.6.1. Minimum Distance Classification

MD classifier is based on the computation of the Euclidean distance, in the iper-
dimensional space defined by TS layers [54]. MD approach is certainly more effective
when class dispersion is sufficiently low. MD admits the adoption of a distance threshold
to accept or reject class assignation for the pixel/polygon. If this threshold is exceeded,
pixel/polygon remains unclassified, i.e., it is not assigned to any of the classes. For this
work, the distance threshold value was set to 1.3 points of NDVI.

2.6.2. Random Forest Classification

RF is a type of supervised machine learning algorithm based on multiple prediction
models. Each model used by RF forecasting is usually a decision tree. This means that
a RF combines many decision trees in a single model. Individually, the forecasts made
by individual decision trees may not be accurate, but combined together, forecasts will
be averagely closer to the true result. RF algorithm can be used for both regression and
classification problems [55]. The use of RF in remote sensing in order to map different areas
is widely discussed in the literature [56–59]. For this work, RF was run setting a number
of trees equal to 10 and a number of training samples equal to 5000 pixels. RF design
was decided with reference to some “unstructured” repeated trials. The best performing
configuration, in terms of kappa coefficient value (K), was selected out of the RF run trials.
Authors did not deepen further this issue since RF parameters selection is expected to be
set up time by time when the classifier is run. Consequently, no general indication can be
given at this point.

2.7. Classifications Accuracy Assessment

MD and RF classification were tested with respect to GCs in order to assess classifica-
tion accuracy. In total, 664 GCs were used to generate the confusion matrices and compute
performance parameters: overall accuracy (OA), user’s and producer’s class accuracy (UA
and PA) and K were calculated [60].

2.8. Service Prototype Development

Classifications produced by MD and RF algorithms were integrated in a prototype
system that could be used to verify truthfulness of GSAA. Initially, a spatial join was
performed to transfer MD and RF class codes to GSAA attribute table. Based on this new
dataset, hereinafter called controls map (CM), the following conditions were tested and a
new code recorded in a further attribute table field (Table 7).
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Table 7. Tested conditions and actions that the control system operates with respect to Minimum Distance (MD) and Random Forest
(RF) classification results.

Assigned CM Code Tested Condition Action

1 Class assignation from MD and RF are both concordant to GSAA No ground survey is needed
2 GSAA is equal to at least one classification No ground survey is needed

3 Class assignation from MD and RF are different and both
discordant with GSAA A ground survey is suggested

4 Class assignation from MD and RF are equal but discordant
with GSAA A ground survey is needed

For each CM code, a specific administrative procedure is expected, involving (or
not) GCs, depending on resulting priority. This prototypal methodology would allow
paying agencies to proceed with PAC contributions payment and improving irregularities
detection. Materials and Methods should be described with sufficient details to allow others
to replicate and build on published results. Please note that publication of your manuscript
implicates that you must make all materials, data, computer code, and protocols associated
with the publication available to readers. Please disclose at the submission stage any
restrictions on the availability of materials or information. New methods and protocols
should be described in detail while well-established methods can be briefly described and
appropriately cited.

Research manuscripts reporting large datasets that are deposited in a publicly available
database should specify where the data have been deposited and provide the relevant
accession numbers. If the accession numbers have not yet been obtained at the time of
submission, please state that they will be provided during review. They must be provided
prior to publication.

Interventionary studies involving animals or humans, and other studies requiring
ethical approval must list the authority that provided approval and the corresponding
ethical approval code.

3. Results and Discussions
3.1. Selection of Controllable Fields

GSAA data were filtered according to the above-mentioned geometric criteria involv-
ing SI and area parameters of fields. Only 22% (47,576 out of 208,675 starting) of the fields
showed to satisfy geometric requirements to make them suitable to be controlled by S2 data.
While in terms of surface area there is not a large decrease, from 115,647 ha to 85,854 ha
(about 74% of the total). The huge reduction of controllable fields was mainly related to the
peculiar fragmentation of the Italian agricultural landscape made of many small properties
with highly anisotropic geometries. These fields were considered not reliable and have a
poor impact on PAC contributions; therefore were masked out from all subsequently steps.

3.2. ROI Selection and Assessment

ROI separability assessment was performed according to JM and results are shown in
Table 8. In general, low JM values, never exceeding 0.9, were found. This could be related
to the frequency distribution of NDVI values along TS. It can be noted that many ROI
profiles (Figure 6) contain observations with low NDVI values occurring when no active
vegetation is present (winter or before the development/sowing of crops). This period, if
included in the profile during the classification process, could make classes more similar,
being possibly related to bare soil condition preceding vegetation growth.
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Table 8. Test separability of ROI with JM, low values are underlined (JM low values between summer
crops in red and JM low values between multi-modal TS profiles in blue).

ROI ID 2019 100 101 200 300 301 400 500

100 0.33 0.10 0.29 0.52 0.10 0.85
101 0.30 0.09 0.24 0.36 0.61
200 0.29 0.51 0.06 0.82
300 0.25 0.34 0.64
301 0.56 0.43
400 0.86
500

In spite of this, JM test values can be used to explore class to class similarity. Table 8
shows that low values concern comparison between summer crops (in red), that necessarily
present a similar phenology. For all of them, biomass is expected to be maximum in
July–August and the growing season duration is similar as supported by their agronomic
calendars (Figure 2). Wheat (winter crop) and soybeans (summer crop) show, expectably,
low JM values: this was found to be majorly due to the succession of crops (a summer crop
following a winter one) that, in many cases, is the ordinary field management strategy. This
determines a multi-modal TS profiles that introduces noise when trying to use the NDVI
profile of the whole season to separate crops. (Table 8 blue color). A higher separability
was, instead, found between meadow and other classes.

3.3. ROI Selection and Assessment

Results of MD and RF classification are shown in Figure 7. Area size and number
of classified fields are reported in Table 9 for all the classes. Although number and area
size of plots were the same for both the classifications, MD classification was run setting a
distance threshold that labeled as unclassified about 11,000 plots (about 19,500 ha). Rice
resulted the main crop type in AOI for both MD and RF.
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Table 9. Test separability of ROI with Jeffries-Matusita test (JM).

Crop Classes MD Classification RF Classification
Number of Plots Class Area (ha) Number of Plots Class Area (ha)

1 4180 7840.55 12,934 23,181.91
2 7683 11,337.21 11,004 17,418.45
3 655 786.39 1687 2086.42
4 21,446 44,441.33 19,063 40,444.23
5 2251 1768.32 2888 2552.56

3.4. Classification Accuracy Assessment

Classifications accuracy was tested with respect to GCs and the correspondent con-
fusion computed (Tables 10–12). In general, it can be noted that: OA and K were high
for both MD and RF (>80% and >0.70, respectively); user’s class accuracy (UA) and pro-
ducer’s class accuracy (PA) for corn, rice, and meadow were high (>70%); soybean and
wheat showed the lowest UA and PA values for both classifications (Table 12). This was
already suggested by the JM test that highlighted a very low separability between these two
classes, possibly due to the bi-modal NDVI profile characterizing many winter wheat fields,
where a second crop is often planted after the yield. Soybean and rice, similarly, showed
a high commission that could be related to their similar phenology. For these crops year
periods when vegetation is not active seems to majorly affect classification commission.
Similar results were obtained by Konduri [61] while classifying a large area in USA using
multi-temporal MODIS (Moderate Resolution Imaging Spectroradiometer) data: resulting
UA and PA values ranged from 40% to 60% for corn, wheat, soybean, and rice. Similarly,
Belgiu [62] found comparable UA and PA values for corn, wheat, rice, and meadow in
different study areas (USA, Romania, and Italy) basing classification on RF and S2 data.
Additionally, the highly fragmented and varying Italian agricultural context, aiming at
maximizing specificity and quality of products, certainly increase phenological differences
also within the same crop class; this makes more probable that specific groups of the same
class appear majorly similar to specific groups of another crop class. Some improvement of
classification results can certainly come from the adoption of machine learning/artificial
intelligence algorithms supported by additional discriminants like field geometrical and
textural features, topographic parameters, and other spectral indices [63,64]. Nevertheless,
the choice of basing the proposed procedure on simple, controllable, and “user-friendly”
classification algorithms, still remains strategic in the present technological transfer context.
In fact, in too many cases, technicians from stakeholders do not still possess remote sensing
skills and a simplified approach to make them closer to this new approach is mandatory.

Table 10. Confusion matrix of AOI performed by MD classification.

MD Classification

Crop Codes Reference
Total1 2 3 4 5

Classification

1 5961 591 837 5766 60 13,215
2 2542 20,665 2101 15 527 25,850
3 11 48 695 0 174 928
4 1625 4041 1040 75,516 1596 83,818
5 213 285 2468 30 9043 12,039

Total 10,352 25,630 7141 81,327 11,400 135,850
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Table 11. Confusion matrix of AOI performed by RF classification.

RF Classification

Crop Codes Reference
Total1 2 3 4 5

Classification

1 6362 108 1406 6658 60 14,594
2 1394 22,763 694 4922 1463 31,236
3 50 83 4878 5 596 5612
4 2436 1636 47 71,191 16 75,326
5 199 167 283 24 9292 9965

Total 10,441 24,757 7308 82,800 11,427 136,733

Table 12. Test separability of ROI with JM.

Crop Codes MD Classification RF Classification
UA PA UA PA

1 45.11 57.58 43.59 60.93
2 79.94 80.63 72.87 91.95
3 74.89 9.73 86.92 66.75
4 90.10 92.85 94.51 85.98
5 75.11 79.32 93.25 81.32

OA 82.36 83.73
K 0.70 0.73

3.5. Service Prototype Development

CM layer (Figure 8), equipped with codes ideally activating ARPEA procedures for
controls about truthfulness of GSAA, certainly represents an improving tool of present
situation. In particular, it makes possible to extend preliminary controls to the 22% in AOI
and define a priority of field campaigns. CM statistics for AOI are shown in Figure 9 with
reference to monitored crops.
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Figure 9 shows that 38,164, corresponding to 80% out of the total controlled fields, (22%
of GSAA after shape/size filtering) seemed to not require GCs (CM code 1–2); 3964 GSAA
(8% of controlled fields) appeared to require GCs (CM code 4). For 5448 fields (12%
of controlled fields—CM code 3), MD, RF, and GSAA were not concordant with each
other: deductions about these fields have to be considered unreliable making desirable
(not mandatory) GCs. In terms of surface, Figure 9 shows that over 70,000 ha seemed
to not require GCs (CM code 1–2); over 6500 ha appeared to require GCs (CM code 4);
and for about 8000 ha (CM code 3), was suggested GCs. Summarizing, one can say that:
(a) the procedure was able to test 22% of GSAA fields; (b) a reliable check (codes 1, 2,
4) was obtained for 88% of selected fields corresponding to about 19% of GSAA fields;
(c) no reliable information concerned the 12% of selected fields corresponding to the 2.6%
of GSAA fields. These could be reasonably included in the 5% of GSAA fields that are
ordinarily controlled by ground campaigns, making selection more focused than previously.
With respect to expectations from ARPEA, this approach still has a limit related to the need
of using TS covering the entire growing season. This determines that classification results
can be made available only at the end of the agronomical year (mid of October), making
GCs impossible to be operated when crops have not still been harvested.

3.6. Future Developments

Future developments of this work will be certainly addressed to improve present clas-
sifications results. The joint adoption of many spectral indices, the integration of Sentinel 2
and Sentinel 1 data and the collection of additional structured agronomic parameters (e.g.,
Leaf Area Index, Growing Degree Day) area certainly need to be considered.

Moreover, some tests will be addressed to investigate if crop detection can be accu-
rately obtained also before the end of the growing season by progressively shortening the
sequence of NDVI observations. In this case, a time threshold should be identified and
tested against time deadlines of administrative procedures of CAP controls to, eventually,
make possible an early warning to farmers to correct their declarations.

3.7. Discussions

Farmers that intend to access CAP contributions must apply to the territorially com-
petent Paying Agency through GSAA, a GIS-based procedure that contains information
about land use and size of parcels and location of the (eventual) ecological focus areas.
Paying Agencies are called to verify GSAA compliance with requirements through AC
and SC. SC, in particular, are generally performed with reference to five percent of appli-
cations to verify truthfulness of declared crop type and areas, compliance of eligibility
criteria, and envisaging of commitments and obligations. SC are presently operated by
photo-interpretation of high-resolution satellite images and/or, in specific and rare cases,
by direct ground checks (GCs). An important step, too often neglected, is the a-priori
selection of those GSAA fields that can be reasonably controlled by satellite (i.e., showing
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specific shape and size features). In AOI, only the 22% of fields proved to be compliant
with shape/size requirements. While in terms of surface area, there is not a large decrease
(about 74% of the total). As far as separability of crop classes, based on NDVI temporal
profiles was concerned, it proved to be a key and limiting factor. Confusion matrices,
built with respect to ground controls, showed an OA > 80% for both MD and RF. Commis-
sion and omission errors were not negligible, suggesting that some crops express similar
phenological behaviors. Rice, soybean, and corn demonstrated to be poorly separable
(JM < 0.10). Unexpectedly, wheat and soybean showed a low degree of separability and
highlighted that some classification problems were due to winter crop-related practices
where two successive crops are coupled along the year in the same field (bi-modal NDVI
temporal profile). In spite of these improvable situations, meadow, rice, corn, and wheat
classes proved to be reliably detectable (UA > 70%). From an operational point of view, the
choice of coupling two classifiers (MD and RF) within the same procedure made possible
to integrate correspondent results to generate the CM layer. The latter can be interpreted as
a technical tool supporting the administrative process by ARPEA where, for each GSAA
field suitable to be controlled by satellite, a code is assigned suggesting the administrative
procedure to adopt during controls. In AOI, according to CM, the eight percent of PAC
2019 applications for fields suitable to be controlled by satellite (22% of the total), were
recognized as requiring GCs, since detected class by remote sensing was different from the
declared one; conversely, the 80% proved to be consistent with GSAA applications and,
consequently, no GC was required. The remaining 12% referred to unreliable detection.

4. Conclusions

In this work, a prototype service was proposed aimed at supporting controls by
institutional players (e.g., ARPEA) about farmers’ EU CAP applications. This work was
solicited by the Piemonte Agency for Payments in Agriculture (ARPEA) to support SC
with special concern about five crops: soybean, corn, wheat, rice, and meadow. The
proposed procedure, currently, represents one of the first institutional satellite-based
workflows in the EU context. The procedure relies on NDVI time series from Copernicus
Sentinel 2 data, assuming temporal profiles of NDVI as descriptors of crop phenology
capable of discriminating crops through a classification process. In this work, NDVI profile
classification was operated by coupled supervised classifiers that ensured easy use by
unskilled users: Minimum Distance and Random Forest, both operating in the time domain
of NDVI temporal profiles (OA < 80% for both algorithms). AOI was selected within
the agriculture-devoted province of Vercelli (Piemonte Region), where a heterogeneous
richness of crops was present, included the above mentioned five ones. In spite of this
preliminary, but institutionally supported, experience, the proposed prototypal service
proved to be able to optimize GCs, ranking, and mapping the priority of controls, thus
allowing economic savings (over 70,000 ha, about 83% of monitorable fields, do not seem
to require GCs). It is worth noting that, until 2016, only the five percent of GSAA were
controlled according to a random selection. Conversely, the proposed procedure makes
now possible to control all “suitable“ GSAA and move field selection from a random
to a focused and ranked sampling. Nevertheless, the reliability of deductions strictly
depends on ROI quality and specificity where agronomic skills are basic. Consequently,
the adoption of this tool within administrative workflows will have to take carefully into
account that reliable data and should feed the system concerning training set to adopt
during classification and that, the training set has to be updated annually.
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