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ABSTRACT 
 

The current standard of inflammatory bowel disease (IBD), especially, Crohn’s disease (CD), 
diagnosis is set through an invasive endoscopy procedure. However, serum metabolites hold 
potential as useful biomarkers for non-invasive diagnosis and treatment of IBDs. The goal of this 
research was to elucidate the biomarkers including metabolites and genes related to IBDs, to show 
their distinguishing and common features, and to create a machine-learning (ML) model for 
recognition of each disease. We explored metabolic pathways and gene–metabolite networks 
related to unspecified-IBD (uIBD), Crohn’s diseaseand ulcerative colitis (UC). P38 MAPK, ERK1/2, 
AMPK, and proinsulin were found to be closely related to the pathology of IBDs. The best 
performing ML model, trained on filtered disease-specific metabolite datasets, was able to predict 
metabolite class with 92.17% accuracy. Through examination of IBD-related serum, significant 
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relationships between the inputted metabolites and certain metabolic and signaling pathways were 
found, which can be pinpointed and used to increase accuracy of disease diagnoses. Development 
of a ML model including metabolites and their chemical descriptors made it possible to achieve 
considerable accuracy of prediction of the IBDs. Our results elucidate a large variety of 
metabolites, genes, and pathways that could be used for better understanding of IBDs’ molecular 
mechanisms.  
 

 
Keywords: Inflammatory bowel disease; Crohn’s disease; ulcerative colitis; metabolomics; metabolic 

networks; biomarkers; machine learning. 
 

1. INTRODUCTION 
 
Recent metabolomics research on the human gut 
microbiome has led to significant attention of 
bacteria species in the human gut and the 
respective metabolomic biomarkers and 
metabolic pathways, which may create 
conditions that foster the occurrence of certain 
diseases. We work within these lines to try and 
elucidate metabolites that may serve as useful 
biomarkers in the inflammatory bowel diseases 
(IBD): ulcerative colitis (UC), Crohn’s disease 
(CD), and unspecified-IBD (uIBD). According to 
the Centers for Disease Control and Prevention, 
approximately 1.3% of US adults (3 million cases) 
were reported to being diagnosed with IBD—
either Crohn’s disease or ulcerative colitis—in 
2015 [1]. Monitoring metabolic changes within 
the body, specifically those stemming from the 
gut microbiome, can be used to elucidate the 
inner workings of the many molecular processes 
present within the body to a greater degree. In 
our case, the pathology and mechanisms of IBD, 
along with how certain changes in the 
concentrations of metabolites produced in the gut, 
are leveraged as indicators of the presence of 
the disease. 
 
Analysis of IBD presence and the related 
metabolites can be useful for specific diagnosis 
of the IBDs, which are comprised of two chronic 
relapsing diseases—Crohn’s disease and 
ulcerative colitis—that inflame and damage the 
gastrointestinal tract (GIT). Crohn’s disease most 
often occurs in the end or the small intestine but 
can occur in any part of the gastrointestinal tract. 
Ulcerative colitis occurs in the large intestine and 
the rectum. Common symptoms of these IBDs 
include persistent diarrhea, abdominal pain, 
rectal bleeding and bloody stools, weight loss, 
and fatigue [2]. Formerly, IBD has been 
associated with defective immune systems, 
certain diets, genetic susceptibility, and 
environmental factors [3], but in recent years, the 
gut microbiota has been increasingly suspected 
to have a major impact on the pathogenesis of 

IBD [4]. There are approximately 2000 bacteria 
species from 12 different phyla in the human 
gastrointestinal tract [5], and the commensalism 
between the microbiota has a significant role in 
not only the metabolism of food and production 
of energy, but also in the protection of the body 
against pathogens [6,7]. Prior research indicated 
that the microbiota and the associated 
metabolites affect the gut health [8]. The gut 
microbiota synthesizes these metabolites, which 
may then be used by the host; these metabolites 
play essential roles in the maintenance of the 
host’s homeostatic health system. Recent 
research has also increased the number of 
metabolites that have functional roles in IBD 
pathogenesis [9].  
 
Dysbiosis can occur in both the inflamed and 
non-inflamed parts of the gastrointestinal tract in 
IBD patients, and research has shown there are 
significant differences in the composition of the 
microbiota of IBD patients as compared to 
healthy patients [10]. It has also been shown that 
the richness and abundance of bacterial species 
decreases in patients with IBD [11]. The probiotic 
bacteria from the Firmicutes and Bacteroidetes 
phyla that are predominant in healthy human 
guts, have been found to be present at 
significantly lower levels or even depleted in the 
guts of IBD patients [12]. However, the 
pathogenic Proteobacteria phylum [13] and the 
pivotal Actinobacteria phylum, which are present 
in small quantities in health patients [14], are 
both elevated in the guts of IBD patients [15].  
 
The current standard of IBD, specifically Crohn’s 
disease diagnosis is the invasive endoscopy 
procedure. However, serum microbiota holds 
potential as a useful biomarker for non-invasive 
diagnosis and treatment of CD [16]. The profiling 
of the gut microbiota has become a useful 
diagnostic tool in IBD treatment, and with 
methods such as deep sequencing and Genome 
Analyzer map (GA-map) dysbiosis testing, 
dysbiosis in IBD patients and the composition of 
gut microbiota can be elucidated [17]. Certainly 
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the identification of IBD early on in its 
pathogenesis would be ideal, either via metabolic 
profiling of IBD-patients’ plasma, serum, urine, or 
fecal samples. Treatments that are known to be 
effective for reducing inflammation and can help 
counteract the pathogenesis of IBD may be 
administered. Metabolic profiles from IBD 
patients can be integrated with data from healthy 
patients to identify specific IBD biomarkers or 
metabolites. As for the specific type of metabolic 
profiles, metabolites from the blood—plasma or 
serum—would present the metabolites that are 
most impactfully and directly involved in the 
disease pathogenesis. Yu and colleagues found 
that reproducibility is good with both plasma and 
serum profiles, but the higher metabolite 
concentrations in serum allow for more sensitive 
results in biomarker detection [18]. And thus, 
serum metabolomic profiling is a promising 
direction for IBD diagnosis and monitoring for its 
unique metabolite profiles [19]. 
 

1.1 IBD-Related Research 
 
Lavelle and Sokol [20] conducted an extensive 
review that defines the classes of metabolites 
produced in the human gut microbiome that are 
altered in IBD-patients, as well as describes the 
pathophysiological evidence for those 
associations. These alterations in the 
composition and function of the human 
microbiota have been researched in numerous 
studies on IBD and contribute to the identification 
of possible targets for therapeutics. 
 
A similar study provided an updated summary on 
the progress regarding research on the human 
gut microbiota and its influences on IBD 
pathogenesis [21]. Their sources from the 
PubMed database were composed of clinical 
studies as well as animal studies related to 
intestinal microbiomes and IBD. The general 
consensus of the previous research findings 
were that the biodiversity of probiotic-associated 
microbiota is decreased, while pathogenic 
microbiota is increased [21]. This brings up 
supported evidence for the significance that 
microbiome health and its associated metabolites 
have on human well-being, specifically intestinal 
permeability and the immune response [21].  
 
Lai and coauthors used high-resolution mass 
spectrometry (HRMS) to conduct and untargeted 
LC/MS metabolomic profiling in Crohn’s disease 
patients. Serum samples of both positive-tested 
and negative-tested patients were used for 
collection and profiling with state-of-the-art 

compound identification workflow [22]. Results of 
this study showed a distinct metabolic profile of 
Crohn’s disease compared to that of the control, 
with most metabolites being downregulated [22]. 
Thus this study upholds the effectiveness that 
untargeted metabolomics has for biomarker 
development and analytical interpretation, 
reinforcing the value of biomarker research in the 
etiological inquiries for IBD. 
 
Dawiskiba and colleagues performed proton 
nuclear magnetic resonance (NMR) 
spectroscopy to analyze, diagnose, and monitor 
serum and urine samples from CD and UC 
patients [23]. The study found certain metabolites 
that greatly contributed to distinguishing active-
IBD from IBD in remission. N-acetylated 
compounds and phenylalanine were up-
regulated in serum, while low-density lipoproteins 
and very-low-density lipoproteins were 
decreased in serum. As for urine samples, 
glycine concentrations were found to be 
increased and acetoacetate decreased [23]. 
They also elucidated metabolites that 
distinguished patients with active IBD from 
healthy control subjects. Leucine, isoleucine, 3-
hydroxybutyric acid, N-acetylated compounds, 
acetoacetate, glycine, phenylalanine, and lactate 
were found to be increased in serum samples. 
Creatine, dimethyl sulfone, histidine, and choline 
and its derivatives were found to be decreased in 
serum samples [23]. Citrate, hippurate, 
trigonelline, taurine, succinate and 2-
hydroxyisobutyrate were found to be decreased 
in urine samples [23]. The findings endorse the 
analytical capacity of NMR-based metabolomic 
research of serum and urine samples as a useful 
tool in distinguishing active IBD-patients from 
those with IBD in remission and from those with 
no IBD. 
 
Daniluk and coauthors performed liquid 
chromatography and mass spectrometry in 
children to perform an untargeted metabolomics 
analysis to detect metabolic differences in serum 
metabolites between newly diagnosed and 
untreated pediatric CD and UC patients, in 
contrast to a healthy control group [24]. Using 
serum untargeted metabolomics, they were able 
to find that only one metabolite—
lactosylceramide 18:1/16:0 (LacCer 18:1/16:0)—
that significantly discriminated CD patients from 
UC patients [24]. 
 
Despite the numerous studies performed on CD, 
UC, and uIBD detection and biomarker discovery 
situated on plasma, serum, urine, and fecal 
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metabolomes, further metabolic profiling—filtered 
by specific needs of researchers, along with the 
assortments and advantages provided by the 
different types of samples—may yield new 
putative markers due to the ever-changing 
dynamic quality of each of the metabolomes. 
Thus, there is a compelling need to develop 
more reliable IBD markers and through the 
analysis of metabolite profiles, certain biological 
pathways can be identified, allowing for specific 
targeting of treatment for the disease. The goal 
of this research project was to analyze 
metabolites sets of uIBD, CD, and UC and to 
show their distinguishing and common features, 
and to create a machine-learning (ML) model 
that can distinguish them from each other and 
from healthy control subjects. 
 
2. METHODS 
 

2.1 Approach Overview  
 
The programs used for metabolomics analysis 
are MetaboAnalyst 4.0 [25,26], Ingenuity

®
 

Pathway Analysis (IPA
®
) [27,28], PaDEL-

descriptor [29,30], and Waikato Environment for 
Knowledge Analysis (WEKA) [31,32]. The 
flowchart of methods is shown in Fig. 1. 

 
The study began with the selection of 
metabolites significantly related to uIBD, CD, and 
UC diseases, along with a set of random 
metabolites from HMDB [33,34], using 
metabolites’ IDs (HMDB IDs) to represent a 
control group. The sets of metabolites used for 
testing and training were obtained from IBD 
patient serum samples from the publication of 
Scoville and colleagues [19]. The initial table [19] 
contains fold changes (FC) and p-values for 
metabolite expression in all groups. The 
metabolites were filtered by p-values. Those with 
p-values greater than −0.05 were deleted. The 
selected metabolites for uIBD, CD, and UC are 
presented in Supplementary Table S1, sorted by 
decreasing concentration. Selected metabolites 
were analyzed with MetaboAnalyst 4.0 [25,26] to 
find the relevant metabolic pathways for each 
disease. The significance of each metabolic

 

 
 

Fig. 1. Overview of the methods of the study. A selection of metabolites related to uIBD, CD, 
and UC were found and verified from public sources, then inputted into MetaboAnalyst, 

Ingenuity Pathway Analysis, and WEKA programs. Analysis of the metabolites and genes with 
these programs allowed for the elucidation of certain significant pathways tied to each disease 
category, as well as links between the metabolites and proteins. We were also able to create a 

metabolite-based model for recognition of each of the three disease categories 
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pathway for the diseases was then graphically 
displayed. Then the selected metabolites were 
analyzed with the Ingenuity Pathway Analysis 
(IPA) software [27,28]. IPA elucidated 
metabolite–gene networks, with additional 
metabolites and genes interacting with 
metabolites. We used machine-learning (ML) 
methods, specifically the Multilayer Perceptron 
(MLP) classifier in the Waikato Environment for 
Knowledge Analysis (WEKA) [31,32], using 
PaDEL program [29,30] for calculation and 
selection of metabolites’ descriptors, to create a 
metabolite-based model for recognition of and 
differentiation between uIBD, CD, UC, and 
control. 

 
2.2 MetaboAnalyst 
 
MetaboAnalyst 4.0 (Xia Lab, McGill University, 
Montreal Quebec, Canada) [25,26] is a program 
for statistical, functional, and integrative analysis 
of metabolomics data. It allows user to perform 
exploratory statistical analysis, functional 
enrichment analysis, data integration and 
systems biology (biomarker analysis, pathway 
analysis, and network explorer), and data 
processing. The software accepts a large variety 
of metabolomics data input types, such as a list 
of gene/compound names, KEGG ID orthologs 
(KOs) [35], or Human Metabolite Database index 
numbers (HMDB ID) [33,34], to support 
integrative analysis with transcriptomics or 
metagenomics. 
 
2.3 Ingenuity® Pathway Analysis 
 
Ingenuity

®
 Pathway Analysis (IPA

®
; QIAGEN Inc., 

Redwood City, Calif., USA) [27,28] is a dynamic 
genomics and metabolomics analysis tool that 
yields the significance of the inputted data and 
identifies new candidate biomarkers within the 
sample of biological systems. IPA is widely used 
in the scientific research community and is cited 
in thousands of articles for its analysis and 
interpretation of ‘omics data. 

 
2.4 Machine-Learning Analysis 
 
ML analysis was performed on the uIBD, CD, 
and UC datasets with WEKA program 
environment [31,32]. WEKA is a workbench that 
supports several pattern-recognition methods. 
Attribute selection was performed with PaDEL, 
which introduced 1451 descriptor sets [29,30]. 
These PaDEL descriptors highly contribute to the 
construction of a machine-learning classifier, as 

they provide a vast amount of information 
needed to effectively narrow down the datasets. 
The InfoGain attribute evaluator, along with the 
ranker search method, was then used to rank the 
significance of all these descriptors by measuring 
the information gain with respect to class. After 
InfoGain filtration, the number of descriptors sets 
for each of the three datasets was reduced from 
1451 descriptors per disease, down to 111 
descriptors for uIBD metabolites, 147 descriptors 
for CD metabolites, and 34 descriptors for UC 
metabolites. The multilayer perceptron classifier 
(MLP) method was used to build three robust 
models, one per each disease, via three                
training sets and the corresponding testing               
sets. Other modeling methods and classifiers 
were attempted as well. The full data 
preprocessing and modeling workflow is 
presented in Fig. 2. 
 
Each model was trained using the MLP classifier 
to detect metabolic data of unspecified-IBD 
(uIBD), CD, and UC, through 10-fold cross 
validation tests. To demonstrate the validity                
of these systems, we tested metabolic data             
from CD and UC on the trained uIBD system, 
tested uIBD and CD metabolic data on                      
the trained UC system, and uIBD and UC 
metabolic data on the trained CD system.                    
An overview of the workflow is shown in Fig. 3. 
As a second test to further demonstrate and 
conclude the validity of these systems, we tested 
60 random human database metabolites and 
their corresponding data on each of the three 
disease categories. Model performance was 
evaluated by measuring accuracy, which here is 
understood as the total number of correctly 
classified instances over the total number of 
instances. 
 

3. RESULTS 
 

Unspecified-IBD (uIBD), CD, and UC metabolites 
along with FC-values, p-values, and other 
corresponding attributes were extracted from the 
work of Scoville and colleagues [19] were 
examined to select the best sets for use as 
biomarkers for the diagnosis of each disease. 
After filtration of the metabolites by filtering out 
those with p-values greater than −0.05 and fold 
changes between 0.8 and 1.2, we examined 140 
metabolites for uIBD, 200 for CD, and 37 for UC. 
With the MetaboAnalyst and IPA tools, we 
studied the pathways related to each of the three 
disease categories that could be useful for 
diagnostics and therapeutics. 
 



 
Fig. 2. Block-diagram of the full data preprocessing and modeling steps via machine learning. 

The starting, unfiltered metabolites were collected, then filtered by 
attributes. Then with PaDEL descriptor sets, a more comprehensive dataset was formed, 

allowing for the elaborate training of the machine learning model via the multilayer perceptron 
classifier. Ultimately, the goal is to fortify the 

learning models by testing and trainin
 

Fig. 3. An overview of the workflow of the machine
identify one disease from 

3.1 Metabolic Pathways 
 

With the use of the pathway analysis provided by 
MetaboAnalyst, the most significant of the 
matched pathways corresponding to the inputted 
metabolites arranged by p-values is displayed on 
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diagram of the full data preprocessing and modeling steps via machine learning. 
The starting, unfiltered metabolites were collected, then filtered by p-value and fold change 

attributes. Then with PaDEL descriptor sets, a more comprehensive dataset was formed, 
allowing for the elaborate training of the machine learning model via the multilayer perceptron 

classifier. Ultimately, the goal is to fortify the detection of uIBD, CD, and UC via machine 
learning models by testing and training classified metabolic datasets

 
An overview of the workflow of the machine-learning classifier development strategy to 

identify one disease from another 
 

With the use of the pathway analysis provided by 
MetaboAnalyst, the most significant of the 
matched pathways corresponding to the inputted 

values is displayed on 

the Y-axis, and pathway impact values are 
displayed on the X-axis (the node colors are 
based on the significance, determined by 
and the size of the radii of the nodes are 
determined by their pathway impact values). 
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diagram of the full data preprocessing and modeling steps via machine learning. 
value and fold change 

attributes. Then with PaDEL descriptor sets, a more comprehensive dataset was formed, 
allowing for the elaborate training of the machine learning model via the multilayer perceptron 

detection of uIBD, CD, and UC via machine 
g classified metabolic datasets 

 

learning classifier development strategy to 

pathway impact values are 
axis (the node colors are 

based on the significance, determined by p-value, 
and the size of the radii of the nodes are 
determined by their pathway impact values). 



These p-values and corresponding impact values 
were generated and scaled to fit each specific 
pathway by MetaboAnalyst. Fig. 4a
pathways significantly related to uIBD: Valine, 
leucine, and isoleucine biosynthesis, 
Biosynthesis of unsaturated fatty acids
Aminoacyl-tRNA biosynthesis, Alanine, aspartate, 
and glutamate metabolism, and Linoleic acid 
metabolism. Fig. 4b shows the pathways 
significantly related to CD: Valine, leucine, and 
isoleucine biosynthesis, Biosynthesis of 
unsaturated fatty acids, Citrate cycle (TCA cycle), 
Alanine, aspartate, and glutamate metabolism, 

(a) 

 (b) 
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values and corresponding impact values 
were generated and scaled to fit each specific 

Fig. 4a shows the 
pathways significantly related to uIBD: Valine, 
leucine, and isoleucine biosynthesis, 
Biosynthesis of unsaturated fatty acids, 

tRNA biosynthesis, Alanine, aspartate, 
and glutamate metabolism, and Linoleic acid 

shows the pathways 
significantly related to CD: Valine, leucine, and 
isoleucine biosynthesis, Biosynthesis of 

e cycle (TCA cycle), 
Alanine, aspartate, and glutamate metabolism, 

Glyoxylate and dicarboxylate metabolism, and 
Linoleic acid metabolism. Fig. 4c
pathways significantly related to UC: Valine, 
leucine, and isoleucine biosynthesis, Aminoacyl
tRNA biosynthesis, Arginine biosynthesis, 
Glycine, serine, and threonine metabolism, 
Taurine and hypotaurine metabolism, and 
Linoleic acid metabolism. 

 
These pathways are explained in detail in the 
following sections with respect to the diseases 
they were found active in. 
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Glyoxylate and dicarboxylate metabolism, and 
Fig. 4c shows 

pathways significantly related to UC: Valine, 
leucine, and isoleucine biosynthesis, Aminoacyl-

nthesis, Arginine biosynthesis, 
Glycine, serine, and threonine metabolism, 
Taurine and hypotaurine metabolism, and 

These pathways are explained in detail in the 
following sections with respect to the diseases 
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(c) 

 
 

Fig. 4. Most significant of the pathways corresponding to the inputted metabolites arranged by 
p-values on the Y-axis, and pathway impact values on the X-axis (The node colors are based 

on the significance—determined by p-value—and the size of the radii of the nodes are 
determined by their pathway impact values) of (a) uIBD. Valine, leucine, and isoleucine 

biosynthesis, Biosynthesis of unsaturated fatty acids, Aminoacyl-tRNA biosynthesis, and 
Arginine biosynthesis. (b) CD. Valine, leucine, and isoleucine biosynthesis, Citrate cycle (TCA 
cycle), Biosynthesis of unsaturated fatty acids, Alanine, aspartate, and glutamate metabolism, 

and Glyoxylate and dicarboxylate metabolism. (c) UC. Valine, leucine, and isoleucine 
biosynthesis, Aminoacyl-tRNA biosynthesis, Arginine biosynthesis, Glycine, serine, and 

threonine metabolism, Cysteine and methionine metabolism, Taurine and hypotaurine 
metabolism, Glutathione metabolism, Primary bile acid biosynthesis, Arginine and proline 

metabolism, Phenylalanine, tyrosine, and tryptophan biosynthesis 
 

3.1.1 Metabolic pathways of unspecified-ibd 
and previous findings 

 
Several significant metabolic pathways involved 
in uIBD were elucidated via MetaboAnalyst 
software [25,26] and were related to the following 
pathways: Valine, leucine, and isoleucine 
biosynthesis, Biosynthesis of unsaturated fatty 
acids, Aminoacyl-tRNA biosynthesis, and 
Arginine biosynthesis.  
 
Valine, leucine, and isoleucine biosynthesis:                
F. He and colleagues highlight the functions                   
and signaling mechanisms of specific                   
amino acids and their role in intestinal 
inflammation in IBD. Valine, leucine, and 
isoleucine are shown to have significant roles in 
intestinal inflammation based on their 
involvement with NF-κB, iNOS, MAPK, ACE2, 
GCN2, CaSR, and mTOR signaling pathways 
[36]. Valine, leucine and isoleucine           
biosynthesis is present in all three diseases, with 
proportionally high significance (as measured                
by p-value and indicative by the bold red          
circle) and proportionally low pathway impact      

to the pathogenesis of all three disease 
categories. 
 
Biosynthesis of unsaturated fatty acids: 
Abulizi and colleagues used 16S rRNA gene 
sequencing and mass-spectrometry-based 
relative quantification of the metaproteome to 
indicate that increased omega-6 polyunsaturated 
fatty acids in one’s diet may lead to gut      
dysbiosis, and therefore is a risk factor for IBD in 
humans [37]. Biosynthesis of unsaturated                
fatty acids is notably present in uIBD and CD, 
with higher significance in uIBD than in CD,             
and equal pathway impact values in both 
diseases.  
 
Aminoacyl-tRNA biosynthesis: A case study 
performed by Fagbemi and colleagues provides 
evidence that recessive mutations involved in 
cytosolic isoleucyl-tRNA synthetase lead to                    
the pathogenesis of IBD [38]. Aminoacyl-tRNA 
biosynthesis is notably present in IBD and                 
UC, with higher significance in IBD than in UC, 
and equal pathway impact values in both 
diseases.  
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Arginine biosynthesis: Morgan and colleagues 
observed alterations in the human 
gastrointestinal microbiota metabolism in both 
UC and CD. Amino-acid metabolism showed 
major perturbations, including the increase of 
arginine gene abundance [39]. 
 

3.1.2 Metabolic pathways of Crohn’s disease 
and previous findings 

 

Several significant metabolic pathways involved 
in uIBD were elucidated via MetaboAnalyst 
software [25,26]. Metabolites that exhibited fold 
changes under 0.8 and over 1.2 were related to 
the following pathways: Valine, leucine, and 
isoleucine biosynthesis, Citrate cycle (TCA cycle), 
Biosynthesis of unsaturated fatty acids, Alanine, 
aspartate, and glutamate metabolism, and 
Glyoxylate and dicarboxylate metabolism. 
 
Valine, leucine, and isoleucine biosynthesis: 
Valine, leucine and isoleucine biosynthesis is 
present in all three diseases, with proportionally 
high significance (as measured by p-value and 
indicative by the bold red circle in Fig. 4) and 
proportionally low pathway impact to the 
pathogenesis of all three disease categories. 
Chiba and colleagues measured plasma-free 
amino-acid profiles in Crohn’s disease patients. 
Via high-performance liquid chromatography, the 
fasting plasma concentrations of valine, leucine, 
and isoleucine amino acids were measured. 
Results showed significant correlations in all 
patients, between Crohn’s disease activity index 
and concentrations of valine, leucine, and 
isoleucine, amongst other amino acids as well 
[40].  
 
Citrate cycle (TCA cycle): Citrate cycle (TCA 
cycle) is notably present only in CD, with a 
similar significance value to the Biosynthesis of 
unsaturated fatty acids in the same disease, and 
a similar pathway impact value to Alanine, 
aspartate, and glutamate metabolism in the 
same disease. Weiser and coauthors found 
several pathways, including the TCA cycle, that 
are related to signaling of G-protein coupled 
receptors, which, through migration and 
accumulation within the inflamed tissues, are 
highly expressed in monocytes and 
macrophages with crucial roles in the 
pathogenesis of CD [41]. 
 

Biosynthesis of unsaturated fatty acids: Liu 
and colleagues used gas chromatography to 
elucidate significant changes in the metabolic 
levels in the synthesis of long-chain 
polyunsaturated fatty acids and indicated that 

impaired fatty acid desaturation contributes to 
chronic inflammation in CD [42]. Biosynthesis of 
unsaturated fatty acids is notably present in uIBD 
and CD, with higher significance in uIBD than in 
CD, and equal pathway impact values in both 
diseases.  
 

Alanine, aspartate, and glutamate metabolism: 
Diab and colleagues performed integrative 
pathway analysis to elucidate significantly altered 
metabolic pathways, with alanine, aspartate, and 
glutamate metabolism included. This pathway 
consists of N-acetyl-L-aspartic acid, L-
asparagine, L-glutamine, L-glutamic acid, 
gamma-aminobutyric acid, fumaric acid, succinic 
acid, and holds a p-value of 0.014 and impact 
value of 0.53 [43]. 
 

Glyoxylate and dicarboxylate metabolism: Q. 
He and coauthors analyzed functional changes 
associated with CD and microbiota alterations via 
pairwise comparisons, to elucidate the 
enrichment of genes in pathways involved in 
glyoxylate and dicarboxylate metabolism [44]. 

 
3.1.3 Metabolic pathways of ulcerative colitis 

and previous findings 

 
Several significant metabolic pathways involved 
in uIBD were elucidated via MetaboAnalyst: 
Valine, leucine, and isoleucine biosynthesis, 
Aminoacyl-tRNA biosynthesis, Arginine 
biosynthesis, Glycine, serine, and threonine 
metabolism, Cysteine and methionine 
metabolism, Taurine and hypotaurine 
metabolism, Glutathione metabolism, Primary 
bile acid biosynthesis, Arginine and proline 
metabolism, and Phenylalanine, tyrosine, and 
tryptophan biosynthesis. 

 
Valine, leucine, and isoleucine biosynthesis: 
Wang and colleagues studied UC-related urine 
samples and found that valine, leucine, and 
isoleucine biosynthesis were significantly related 
to the disease [45]. Valine, leucine and 
isoleucine biosynthesis is present in all three 
diseases, with proportionally high significance 
(as measured by p-value and indicative by the 
bold red circle in Fig. 4) and proportionally low 
pathway impact to the pathogenesis of all three 
disease categories. 

 
Aminoacyl-tRNA biosynthesis: Filimoniuk and 
colleagues found that aminoacyl-tRNA 
biosynthesis is one of the metabolic pathways 
that is most altered in patients with inflammatory 
bowel diseases [46]. Aminoacyl-tRNA 
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biosynthesis is notably present in IBD and UC, 
with higher significance in IBD than in UC, and 
equal pathway impact values in both diseases. 

 
Arginine biosynthesis: Coburn and coauthors 
found diminished tissue L-arginine in UC patients, 
likely attributable to a decrease in its cellular 
uptake. Together with the decreased ARG1 
expression, there is a pattern of dysregulated L-
Arg availability and metabolism in UC [47]. 
 
Glycine, serine, and threonine metabolism: 
Gu and colleagues used GC-MS-based 
metabolomics analysis to compare colitis mice to 
healthy control mice, and found that amino acids 
including glycine, serine, and threonine 
concentrations were increased in the disease-
positive mice [48]. Glycine, serine and threonine 
metabolism is notably present only in UC with 
significance and pathway impact values similar to 
that of Arginine biosynthesis in the same disease. 
 

Cysteine and methionine metabolism: 
Cysteine and methionine metabolism is notably 
present only in UC, with significance slightly 
lower than that of Arginine biosynthesis in the 
same disease, and similar pathway impact value 
as Arginine biosynthesis in the same disease. 
Zhang and coauthors used the Mann–Whitney U 
test to find alterations of sulfur and 
cysteine/methionine metabolism pathways in the 
mucosal-luminal interface microbiome of IBD 
(CD and UC) patients [49].  
 

Taurine and hypotaurine metabolism: Taurine 
and hypotaurine metabolism is notably present 
only in UC, with significance values similar to that 
of Cysteine and methionine metabolism, and a 
pathway impact value somewhat higher than that 
of Cysteine and methionine metabolism. Kolho 
and colleagues analyzed blood and stool 
samples from pediatric patients with UC and 
found that a large proportion of the observed 
metabolic pathways were altered when 
compared to controls, with taurine and 
hypotaurine metabolism being the most highly 
enriched pathways [50]. When related to the 
blood inflammatory marker ESR, taurine was 
amongst the UC-related metabolites with the 
strongest correlations. Furthermore, the relation 
between fecal calprotectin—a marker of intestinal 
inflammation—and fecal metabolites showed that 
taurine is one of the most significant metabolites 
associated with the level of inflammation [50]. 
 

Glutathione metabolism: Holmes and 
colleagues collected endoscopic biopsies of 
colon mucosa from normal subjects, from 

macroscopically normal tissue of patients with 
either inactive or active UC, and from inflamed 
tissue of patients with active UC. The mucosal 
contents were analyzed via liquid 
chromatography and the oxidized glutathione 
content of the mucosa was found to have 
significant positive correlations with disease 
severity among UC patients [51].  
 

Primary bile acid biosynthesis: Miettinen and 
coauthors found that diarrhea in UC patients is 
not caused by the excessive fecal loss of bile 
salts, but rather by the decreased absorption and 
water and electrolyte retention due to the 
damaged colonic mucosa [52]. 
 

Arginine and proline metabolism: Arginine 
biosynthesis is notably present only in UC, with 
significance and pathway impact values similar to 
that of Glycine, serine and threonine metabolism 
in the same disease. Schicho and colleagues 
studied the differences in serum and plasma 
metabolite levels of UC and CD patients versus 
healthy controls, and found that in both UC and 
CD patients, there is noticeable alteration in 
amino acid metabolism in serum and plasma, 
including the increased levels of arginine and 
proline [53].  
 

Phenylalanine, tyrosine, and tryptophan 
biosynthesis: Nikolaus and coauthors used 
IVD-CE certified high-performance liquid 
chromatography kit (ClinRep® Complete Kit for 
the analysis of phenylalanine, tyrosine and 
tryptophan; RECIPE Chemicals + Instruments 
GmbH, Munich, Germany) and found significantly 
increased tryptophan concentrations and 
tryptophan metabolism associated with the 
activities of both CD and UC [54].  
 

3.2 Integrative Analysis of Networks 
 

Sets of metabolites involved with uIBD, CD, and 
UC were separately submitted to the IPA 
program [27,28]. With the extensive database of 
interactions in the IPA software, numerous sets 
of gene–metabolite networks were elucidated, 
along with specific interactions between each of 
them (Fig. 5). Notable links in the networks are 
further described below. 
 
3.2.1 uIBD networks 
 
The first uIBD network (Fig. 5a) includes a set of 
submitted metabolites, indicated in gray, and 
generated metabolites, in white, which interact 
with proteins highlighted in blue. Some notable 
interactions are between the metabolites and 
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ERK1/2, AMPK, and proinsulin. Previous 
research shows that sustained activation of 
ERK1/2 is observed in IBD [55]. AMPK has been 
indicated to be a key enzyme involved in the 
inflammatory bowel diseases [56], due to its 
ameliorative effects that work to mitigate ‘leaky 
gut’ symptoms and improve epithelial barrier 
functions [56]. Furthermore, the inhibition or 
inactivation of AMPK may lead to a decrease in 
the proinsulin production, the precursor to insulin, 
which would present effects similar to that of 
insulin resistance. Insulin resistance has 
previously been associated with chronic 
inflammation, a significant characteristic of IBD 
[57]. 
 
The second uIBD network (Fig. 5b) includes 
metabolites that interact with EGFR and PARP1. 
Previous findings show that EGFR is frequently 
expressed in IBD-related research [58]. Inhibition 
of PARP-1 may reduce some of the major 
triggers for apoptosis and decrease production of 
AP1 [59], which has been shown to be linked to 
inflammation [60]. Thus, the targeting of the 
PARP-1 pathway may be a viable approach to 
IBD therapeutics. Additionally, the calcium ion 
metabolite appears to be a major contributor to 
many sub-networks in this second network, with 
direct links to both EGFR and PARP1. 
 

The third uIBD network (Fig. 5c) includes 
metabolites that interact with APP and TNF. APP 
has shown strong links to Alzheimer’s disease, 
but research also suggests that APP may 
influence susceptibility towards gut inflammatory 
diseases [61]. Evidence showing a link between 
TNF and IBD have been reported in previous 
publications in which IBD-patients showed 
increased levels of TNF in their serum samples 
[62]. Additionally, the metabolites—cyclic AMP 
and nitric oxide—appear to be a major 
contributor to many sub-networks in this                 
third network, with direct links to both APP and 
TNF.  
 
The extensive, protein-heavy fourth uIBD 
network (Fig. 5d) shows some metabolite-to-
protein interactions, but predominantly depicts 
protein-to-protein interactions. The notable 
metabolite—which was found by the IPA tool—
cytokine, has direct links to many of the proteins 
in the network, including ERK, MAPK, Akt, and 
JNK, amongst numerous others. This extensive 
series of links are displayed in blue colored lines. 
As previously stated, past findings suggest a 
correlation between sustained activation of 
MAPK/ERK and IBD [55]. Furthermore, 

inflammatory cytokines have been implicated in 
activation of both the Akt and Jnk signaling 
pathways [63,64]. 
 

3.2.2 CD networks 
 

The first CD network (Fig. 5e) includes 
metabolites that interact with proinsulin, ERK1/2, 
and Ldh-complex. Past research on proinsulin 
and ERK 1/2 are described above. Additionally, 
ERK1/2 activation may significantly impact the 
symptom of diarrhea in patients with CD [65]. In 
this network, citric acid, kynurenic acid, succinic 
acid, and L-malic acid are directly linked to and 
un-reciprocatively act upon the Ldh-complex. 
These links are displayed in blue colored lines. 
This may cause an overproduction of mentioned 
complex, with no regulation to limit production, 
which could potentially lead to the pathogenesis 
of CD. Extensive research regarding the effect of 
the Ldh-complex on IBD is not yet readily present, 
but there are findings that strongly suggest a 
positive correlation between Ldh-complex 
concentrations and pathogenesis of diseases 
[66].  
 

The second CD network (Fig. 5f) includes 
metabolites that interact with AMPK, insulin, and 
Akt, amongst numerous other proteins. Literature 
has shown that the mTORC1 protein holds a 
central role in autophagy regulation, and it has 
been suggested that AMPK is involved in the 
inhibition of mTORC1 [67]. It has also been 
found that patients with CD display increased 
insulin secretion levels caused by an enhanced 
beta cell function [68]. This increased secretion 
of insulin may even override the insulin 
resistance caused by the chronic inflammatory 
state of the disease [68]. Lastly, inflammatory 
cytokines have been implicated in activation of 
the Akt signaling pathway [63].  
 

The third CD network (Fig. 5g) includes 
metabolites that interact with EGFR and FAH 
protein complexes. Past research on EGFR is 
described above [58]. In this network, it is shown 
that the EGFR protein acts upon the uridine 
metabolite, which then acts upon the FAH protein, 
as well as the UDP-D-glucose and UDP-N-
acetylglucosamine metabolites. These links are 
displayed in blue colored lines. There is no 
regulation of the FAH protein; it is activated by 
uridine and has no inhibitors or regulators of any 
kind. This under-regulation could potentially lead 
to the pathogenesis of CD. Also, notable, many 
metabolites and protein complexes in this 
network activate or bind to D-glucose, including 
EGFR.  
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The fourth CD network (Fig. 5h) includes 
metabolites that interact with TNF and MYC 
protein complexes. Previous findings suggest 
that IBD-patients show increased levels of TNF 
in their serum samples [62]. As for the effect of 
MYC in CD, it has been found that in active CD-
patients, the down-expression of c-MYC in 
patients’ epithelium may result in attenuated cell 
proliferation, which therefore suggest that it could 
contribute to mucosal ulceration [69]. 
 

3.2.3 UC networks 
 

The first UC network (Fig. 5i) includes a set of 
submitted metabolites, indicated in gray, and 
generated metabolites, in white, which interact 
with P38 MAPK and ERK1/2, both which activate 

the Akt pathway. Previous findings suggest a link 
between P38 MAPK and ERK1/2 to inflammation 
[60]. Also present in this network is AMPK; 
AMPK inactivation has been previously found to 
be increased by insulin absorption and is 
suggested to be an etiological factor in intestinal 
dysfunctions [70].  
 

The second UC network (Fig. 5j) includes 
notable interactions between metabolites and the 
pro-inflammatory cytokine interleukin IL6, which 
has growing evidence that it plays a crucial                
part in intestinal inflammation, a defining 
characteristic of IBDs [71]. The metabolites also 
interact with EGFR, which previous research 
shows is frequently expressed in UC [58]. 

 

(a)  

(b)  
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(c)  

(d)  
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(e)  

(f)  
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(g)  

(h)  



 
 
 
 

Kim et al.; JAMMR, 33(3): 79-104, 2021; Article no.JAMMR.65206 
 
 

 
94 

 

(i)  

(j)  
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(k)  
 

Fig. 5. The interactomes of genes and metabolites for uIBD, CD, and UC. (a) First uIBD network. 
(b) Second uIBD network. (c) Third uIBD network. (d) Fourth uIBD network. (e) First CD network. 

(f) Second CD network. (g) Third CD network. (h) Fourth CD network. (i) First UC network. 
(j) Second UC network. (k) IPA Legend [28]. Note: submitted metabolites are colored in gray 

and generated metabolites are colored white 
 

3.3 Machine-Learning Analysis via MLP 
Classifier 

 

3.3.1 Combination of three disease-
recognition modules 

 

The use of machine-learning techniques to 
facilitate the elucidation of patterns in biomedical 
data has been on the rise. Using machine 
learning (ML) for biomedical purposes has 
become popular and continues to solve many 
problems in biomarker-based diagnostics, as well 
as in drug discovery and therapy. The 
metabolites analyzed in this study were 
characterized using a set of PaDEL descriptors 
in order to create generalized classifiers that 
would be compatible with a variety of possible 
datasets derived from different metabolomics 
platforms [29,30]. The original sets of descriptors 
were preprocessed with InfoGain filtration in 
order to concentrate the information gain present 
in the data, eliminating any noise contributed by 
redundant or insignificant variance patterns. We 
filtered out p-values greater than −0.05 and fold 
changes between 0.8 and 1.2, and examined the 
remaining 140 metabolites for uIBD, 200 for CD, 
and 37 for UC, each with their sets of filtered 
PaDEL descriptors. Using WEKA [31,32], we 
created a set of disease-recognition modules for 
uIBD, CD, and UC. We explored many different 
types of ML classification techniques including 
Naïve Bayes, Logistic, and SGD, but only MLP 
consistently showed high accuracy on the test 
results. The results of the tests are as follows.  

For the uIBD recognition module, four sets of 
tests were performed: (1) a 10-fold cross-
validation; (2) trials of testing CD metabolites on 
the trained uIBD module; (3) trials of testing UC 
metabolites on the trained uIBD module; and (4) 
testing random Human Metabolite Database 
(HMDB) [33,34] metabolites on the trained uIBD 
module. The results are as expected, with the 
cross-validation test yielding the average 
accuracy percentage at 77.48%. The results of 
the other tests and a visual comparison of the 
four sets of tests are shown in Fig. 6a.  
 

For the CD module, four sets of tests were 
performed: (1) a 10-fold cross-validation; (2) 
trials of testing uIBD metabolites on the trained 
CD module; (3) trials of testing UC metabolites 
on the trained CD module; and (4) testing 
random HMDB metabolites on the trained CD 
module. The results are as expected, with the 
cross-validation test yielding the                           
highest accuracy percentage at around 80%. The 
results of the other tests and a visual  
comparison of the four sets of tests are shown in 
Fig. 6b. 
 

For the UC module, four sets of tests were 
performed: (1) a 10-fold cross-validation; (2) 
trials of testing CD metabolites on the trained UC 
module; (3) trials of testing uIBD metabolites on 
the trained UC model; and (4) testing random 
HMDB metabolites on the trained UC module. 
The results are as expected, with the cross-
validation test yielding the highest accuracy 
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percentage of the cross validations of uIBD and 
CD, at 97.30%. The results of the other tests and 

a visual comparison of the four sets of tests are 
shown in Fig. 6c. 

 

(a)  

(b)  

(c)  
 

Fig. 6. Performance of each metabolite set examined is visually displayed. (a) A box plot visual 
for the four sets of tests run for the uIBD dataset. (b) A box plot visual for the four sets of tests 

run for the CD dataset. (c) A box plot visual for the four sets of tests run for the UC dataset 
 
 



3.3.2 Multidisease classifier 
 
We then ran a multiclass disease classification to 
build a model that differentiates between 
metabolic data of uIBD, CD, UC, and control 
patients, using a multilayer perceptron. In the 
first few tests, the accuracy did not go past 
approximately 78%. To overcome this hurdle, we 
experimented and found that a certain number of 
hidden layers and nodes that worked well 
with this dataset. We began trials with one 
hidden layer with on-hundred nodes, resulting in 
around 70% accuracy. Then we ran multiple 
trials with one hidden layer, varying the 
number of nodes. Out of the wide range of nodes 
we tested, 150 nodes yielded the high
accuracy—of 76.57%. We then tested different 
numbers of hidden layers, each with 100 nodes 

(a) 

(b) 

Fig. 7. The progress and end results of the multiclass disease classification or the control
three disease datasets—uIBD, CD, and UC. 

process. (b) Three-hidden
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We then ran a multiclass disease classification to 
build a model that differentiates between 
metabolic data of uIBD, CD, UC, and control 

perceptron. In the                 
first few tests, the accuracy did not go past 
approximately 78%. To overcome this hurdle, we 
experimented and found that a certain number of 
hidden layers and nodes that worked well                   

began trials with one 
hundred nodes, resulting in 

around 70% accuracy. Then we ran multiple 
trials with one hidden layer, varying the                
number of nodes. Out of the wide range of nodes 
we tested, 150 nodes yielded the highest 

of 76.57%. We then tested different 
numbers of hidden layers, each with 100 nodes 

per layer to begin with. Only three hidden layers 
proved to be a viable number. We tested the 
number of nodes per each hidden layer. The 
options were plenty; the nodes could be in a 
descending order, ascending order, staggered, 
etc. After numerous rounds of testing, we 
found that one-hundred-twenty nodes in the first 
hidden layer, then eighty in the second hidden 
layer, then sixty in the third hidden 
to be the most well-matched for our dataset. This 
was indeed proven when the test resulted in 
92.17% accuracy in correctly classifying the 
metabolic data to the respective classes. To test 
the validity of this system, we tested random 
HMDB metabolites on the system and the 
system did not recognize the dataset, as 
expected. The progress and results of this are 
showed in Fig. 7. 

 

 

The progress and end results of the multiclass disease classification or the control
uIBD, CD, and UC. (a) One-hidden-layer trials in the experimentation 

hidden-layer trials resulting in highest accuracies
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per layer to begin with. Only three hidden layers 
proved to be a viable number. We tested the 
number of nodes per each hidden layer. The 

nodes could be in a 
descending order, ascending order, staggered, 
etc. After numerous rounds of testing, we              

twenty nodes in the first 
hidden layer, then eighty in the second hidden 
layer, then sixty in the third hidden layer proved 

matched for our dataset. This 
was indeed proven when the test resulted in 
92.17% accuracy in correctly classifying the 
metabolic data to the respective classes. To test 
the validity of this system, we tested random 

abolites on the system and the 
system did not recognize the dataset, as 
expected. The progress and results of this are 

 

 

The progress and end results of the multiclass disease classification or the control and 
layer trials in the experimentation 

accuracies 
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To further test the reliability of the multidisease 
classifier model, we ran additional tests with 
submissions of varying numbers of metabolites 
from each disease, all randomly selected using a 
random number generator. If this multidisease 
model were truly effective, these additional tests 
would result in similar percentages to the test 
with a submission of all the metabolites, which, 
as stated above, resulted in 92.17% accuracy. 
Multiple trials of five different numbers of 
metabolites were conducted. The intervals were 
five metabolites, ten metabolites, twenty 
metabolites, fifty metabolites, and one-hundred 
metabolites from each disease. Each set number 
of metabolites was tested ten times, with each 
trial consisting of a new array of metabolites 
determined by a random number generator. The 
resulting accuracies from inputting the test sets 
to the multidisease classifier are as follows. The 
testing sets with five metabolites resulted in an 
average of 65.85% accuracy. The testing sets 
with ten metabolites resulted in an average 
accuracy of 72.46%. The testing sets with twenty 
metabolites resulted in an average accuracy of 
82.92%. The testing sets with fifty metabolites 
resulted in an average accuracy of 89.12%. The 
testing sets with a hundred metabolites resulted 
in an average accuracy of 87.45%. It is obvious 
that the best accuracy can be achieved with 50 
or more input metabolites set, but quite 
reasonable accuracy can be achieved even with 
20 metabolites set. In real life often, the test sets 
can have a limited number of metabolites 
especially if other than mass-spectroscopy 

methods of analysis are used. Thus, it could be 
inferred that a testing sets must consist of at 
least twenty metabolites to yield viable testing 
accuracies. The results of experiments are 
illustrated in Fig. 8. 

 
A few supplementary tests were run as well. In 
order to support that this model is isolated for 
uIBD, CD, and UC data, and can effectively 
detect only their presence and not some other 
disease, we submitted metabolite datasets of 
other diseases to the multidisease classifier 
model. The selected diseases were: bladder 
cancer [72], breast cancer [73], liver disease [74], 
and Alzheimer’s disease [75]. After the input of 
these diseases’ metabolites into the 
multidisease classifier model, the produced results 
were as expected. Each testing set was tested 
five times, and the average accuracies are as 
follows. The testing set of bladder cancer 
metabolites resulted in 46.72% average accuracy. 
The testing set for breast cancer metabolites 
resulted in an average of 49.46%. Showing 
slightly higher results, the testing set for liver 
disease metabolites resulted in an average of 
58.30%. Finally, the Alzheimer’s disease 
metabolite test set resulted in average of 45.81%. 
These results are similar to the tested we 
conducted with random HMDB metabolites, as 
displayed in Fig. 6a-c. The results of these tests 
are depicted in Fig. 9. The low, close-to-chance 
accuracy percentages of these other disease 
tests support the efficacy of the multidisease 
classifier model. 

 

 
 

Fig. 8. Average accuracies of testing trials with varying intervals of metabolites 
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Fig. 9. Graph of the average accuracies from the input of metabolite sets from the four other 
diseases—bladder cancer, breast cancer, liver disease, and Alzheimer’s disease 

 
Table 1. Hard voting scheme. Four of twelve possibilities shown. Other eight were omitted due 

to repetitiveness 
 

uIBD rec UC rec CD rec Multi disease Classifier Hard-Voting Consensus 
yes no no uIBD uIBD 
yes no no UC none 
yes no no CD none 
no yes no uIBD none 
no yes no UC UC 
no yes no CD none 
no no yes uIBD none 
no no yes UC none 
no no yes CD CD 
yes yes no uIBD uIBD 
yes yes no UC UC 
yes yes no CD none 
no yes yes uIBD none 
no yes yes UC UC 
no yes yes CD CD 
yes no yes uIBD uIBD 
yes no yes UC none 
yes no yes CD CD 
yes yes yes uIBD uIBD 
yes yes yes UC UC 
yes yes yes CD CD 

 

To add, we found IBD-related metabolites                   
from another public source to test on our models. 
Specifically, we found CD metabolites from the 
study done on Crohn’s disease metabolites by 
Jansson and colleagues in 2009 [76]. We                  
used PaDEL Descriptors to get the descriptors 
for these metabolites and then tested them on 
our CD recognition model, multi-disease 
classifier model, and also on the other                  
individual recognition models for good measure. 

The individual CD model resulted in 96.15%, and 
the same accuracy resulted for the multi-disease 
classifier. Thus, this fortifies the viability of these 
models. As expected, the uIBD and UC individual 
recognition models did not recognize the CD 
metabolic data.  
 

The final prediction was decided through           
majority voting for classification. We used a      
hard-voting scheme to finalize these results, as a 



 
 
 
 

Kim et al.; JAMMR, 33(3): 79-104, 2021; Article no.JAMMR.65206 
 
 

 
100 

 

consensus disease predictor. The hard-voting 
scheme was applied to each of the three 
individual disease models—uIBD, CD, and UC 
recognition models—as well as the multi            
disease model. We calculated all the possible 
scenarios of results from these models, and then 
calculated the majority vote of each of all              
twelve possibilities. Each possible prediction 
result—uIBD, CD, UC, and healthy—were able to 
be predicted through hard voting on the four 
models. The hard-voting scheme is shown in 
Table 1. 
 

4. CONCLUSION 
 
Analysis of metabolites can be an effective 
method in the detection of various diseases. 
Some significant relationships between the 
inputted metabolites and metabolic signaling 
pathways were shown using the metabolomics 
data, allowing for the determination and 
exploration of hubs in these networks and 
opening the opportunity to look for new treatment 
approaches.  

 
We can create a more robust tool for analysis to 
discover novel biomarkers and/or compounds to 
be used for targeted therapy by integrating 
metabolomic and genomic data. For example, 
the absence of genes and metabolites in Crohn’s 
disease patients but their presence in ulcerative 
colitis patients signifies the potential that 
metabolomics has in the field of disease 
diagnostics. Our results suggest a large variety 
of metabolites, genes, and pathways that could 
be utilized in further studies and possibly lead to 
the selection of inflammatory bowel disease 
biomarker sets. 
 
In this study we elucidated metabolites and 
genes significantly related to the uIBD, CD, and 
UC. The significant metabolic pathways and the 
corresponding proteins and metabolites involved 
are described. Data sets containing descriptors 
packed with high information content concerning 
their potential in machine-learning system 
applications were used, specifically for the 
diagnosis of uIBD, CD, and UC. 
 

5. LIMITATIONS OF STUDY  
 

Limited amount of metabolite profiles of IBD 
patients available from public sources thus far. 
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